PREDICTABILITY. AESTHETICS.

EASE-OF-USE.

PHARMACEUTICAL_GRADE
HYALURONIC ACID GEL

xHyA
Cross-linked Hyaluronic Acid
FASTER TISSUE HEALING
HA supports angiogenesis & tissue formation over an extended period. Its special formulation remains present throughout the various phases of the healing process due to its slow degradation pattern (several weeks).

GREATER OUTCOME PREDICTABILITY
HA stabilizes blood clot and attracts growth factors to support and accelerate hard and soft tissue formation.

LOWER RISKS OF INFECTION
Bacteriostatic action and reduced pathogen penetration.

LESS POST-OP PAIN AND SWELLING FOR PATIENTS
HA’s high molecular weight reduces swelling and discomfort during the healing process.

BETTER AESTHETICS FOR PATIENT
Support scar-less wound healing.

SAVE TIME IN HANDLING BIOMATERIALS
Apply directly on surgical site (in presence of blood), do not rinse. HA can be combined with Smartgraft to prepare the ‘sticky bone’ in 3 minutes.

OPTIMIZATION OF THE PROPERTIES OF OTHER BIOMATERIALS
When xHyA is combined with graft material hydrophilic properties are enhanced, as well as volume stability and remodelling. When xHyA is coated on a collagen membrane, its barrier effect is extended.
WHAT IS PHARMACEUTICAL-GR ADE CROSS-LINKED HYALURONIC ACID?

Hyaluronic acid, as one of the main components of the extracellular matrix is naturally present in the human body.1-3 Studies have shown that prolonged presence of hyaluronic acid during the healing process promotes healing by regeneration rather than repair.4-7 Besides accelerating the healing of soft tissue and bone,7-9 the bacteriostatic properties of hyaluronic acid also protect the wound.10

Cross-linked surgical-grade hyaluronic acid (xHyA) remains present throughout the various phases of the healing process due to its slow degradation pattern (several weeks).11 As shown in different studies, the presence of hyaluronic acid supports and accelerates bone formation.8,9,12,13 When mixed with a bone grafting material hyaluronic acid attracts blood into the matrix and protects the wound. Mixing xHyA’s gel with the graft material facilitates its handling, on top of providing all xHyA’s benefits.

HOW IS xHyA GEL USED?

1. Directly into blood-covered surgical site
2. Mixed with xenograft material, as a ‘sticky bone’
3. Coating the collagen membrane
4. Onto sutured site
EFFECTS AND MODE OF ACTION

PERIODONTAL REGENERATION: xHyA GEL APPLIED DIRECTLY IN BLOOD-COVERED SITE AND POCKETS

1. Attracts blood
2. Stabilizes coagulum and supports tissue regeneration
3. Bacteriostatic effect provides protection
4. Growth factors attracted by hyaluronic acid
5. Coordinates inflammation and accelerates angiogenesis
Regeneration in infrabony defect22
- New Cementum
- New Periodontal Ligament
- New Bone

Regeneration in gingival recessions17
- New Bone
- New Periodontal Ligament
- New Cementum

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Comparison of regeneration outcomes.}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Location & Control & xHyA & \% Increase \\
\hline
Infrabony defect & & & \\
\hline
New Cementum & & & +81* \\
\hline
New Periodontal Ligament & & & +340* \\
\hline
Gingival recessions & & & \\
\hline
New Bone & & & +155* \\
\hline
New Periodontal Ligament & & & +128* \\
\hline
New Cementum & & & +80* \\
\hline
\end{tabular}
\caption{Regeneration outcomes comparison.}
\end{table}
EFFECTS AND MODE OF ACTION

BONE REGENERATION: xHyA GEL IS MIXED WITH THE BONE SUBSTITUTE

1. Forms stable graft putty with bone substitution material
2. Attracts blood
3. Stabilizes coagulum and supports tissue regeneration
4. Growth factors attracted by hyaluronic acid
5. Bacteriostatic effect provides protection
6. Coordinates inflammation and accelerates angiogenesis

More bone cells, less remnant DBBM when mixed with xHyA gel.

Histologies after 2 months with DBBM (left) and DBBM + xHyA (right).
More bone volume in test group (xHyA + xenograft material)24

Note: Collagen membranes (brown), 14 days after implantation in normoglycemic (C+/C1) or diabetic groups (d-/d+) show less collagen resorption when used with xHyA (d+/c+).6,7

EMPOWERING REGENERATION
SCIENTIFIC EVIDENCE

DOWNLOAD THE SCIENTIFIC EVIDENCE
EFFECTS AND MODE OF ACTION

INFLAMMATION, PAIN AND SCAR MANAGEMENT

1. Sutured inflammed site
2. Gel on suture
3. Healed site
Patient discomfort and wound healing of palatal donor sites after free gingival graft (FGG) surgery. \(^{18}\)

<table>
<thead>
<tr>
<th>Day</th>
<th>VAS Pain Score</th>
<th>VAS Burning Score</th>
<th>VAS Colour Match Score</th>
<th>Complete Epithelisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control xHyA</td>
<td>Control xHyA</td>
<td>Control xHyA</td>
<td>Control xHyA</td>
</tr>
<tr>
<td>3</td>
<td>6.42*</td>
<td>1.67*</td>
<td>3.50*</td>
<td>0.67*</td>
</tr>
<tr>
<td>7</td>
<td>4.50*</td>
<td>1.25*</td>
<td>3.33*</td>
<td>0.92</td>
</tr>
<tr>
<td>14</td>
<td>1.25*</td>
<td>0</td>
<td>1.33*</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: VAS score of 0 (no pain/burning sensation) to 10 (severe pain/burning sensation). VAS scores from 0 (no CM) to 10 (excellent CM).
ILLUSTRATION OF RECONSTRUCTION
USER FRIENDLY, TIME EFFICIENT AND COST EFFECTIVE

1. Open flap
2. Debride
4. Regeneration: Periodontal Ligament, Cementum & Bone
5. Sticky Bone: Porcine xenograft & xHyA
6. Apply collagen membrane
8. Collagen membrane resorption slowed down
9. Suture
10. Apply the xHyA gel to minimize scar
11. At suture removal: Apply the xHyA gel to minimize scar
Add xHyA gel to the hydrated bone substitution material.

- Mix using a spatula.
- Repeat steps 2 & 3: Add additional gel until the desired consistency is reached (ca. 2/3 Vol% graft material, 1/3 Vol% xHyA gel).

Keeping the putty at room temperature for 3-5 minutes may improve the consistency of the putty and make it slightly harder.

Apply putty on to the defect.

1. Place bone substitute granules into a dish.
2. Hydrate using physiological solution or blood.
3. Remove any excess fluid.
4. Add xHyA gel to the hydrated bone substitution material.
5. Mix using a spatula.
6. Repeat steps 2 & 3: Add additional gel until the desired consistency is reached (ca. 2/3 Vol% graft material, 1/3 Vol% xHyA gel).
7. Keeping the putty at room temperature for 3-5 minutes may improve the consistency of the putty and make it slightly harder.
8. Apply putty on to the defect.
GINGIVAL RECESSION (CAF)
CASE PROVIDED BY PROF ANDREA PILLONI, ROME, ITALY

1. Pre-operative
A recession defect of Miller Class II was observed in the lower right canine despite the patient’s good dental hygiene and regular dental treatment.

2. Debridement
The recession was treated surgically. After flap preparation, the root surface was carefully cleaned.

3. Injection of the xHyA gel
Surgical-grade xHyA gel was applied on to the root surface and incision areas of the soft tissue to support periodontal regeneration and fast wound healing. The xHyA gel mixes well with blood, which is essential for the clinical efficacy of hyaluronic acid.

4. Suturing
The wound was closed with a Coronally Advanced Flap (CAF).

5. 1 year post-operative
The recession remains well covered with healthy soft tissue.
GINGIVAL RECESSION (TUNNEL)
CASE PROVIDED BY PROF ANTON SCULEAN, BERN, SWITZERLAND

1. Baseline
2. Tunnel
3. Mobilized Tunnel
4. Connective tissue graft (CTG)
5. Application of xHyA gel
6. Applied xHyA gel in the tunnel
7. Connective tissue graft fixed in the tunnel
8. Application of xHyA gel on the connective tissue graft
9. xHyA gel on laterally closed tunnel (stutured)
10. Outcome
MULTIPLE RECESSION COVERAGE
CASE PROVIDED BY DR JÜRGEN PIERCHALLA, GERMANY

1. Pre-operative Baseline
2. Surgery Open flap (CAF protocol)
3. Smartbrane coated with xHyA gel and folded
4. Suturing on tooth surface of the folded Smartbrane coated with xHyA gel
5. Suturing the flap
6. Post-operative
7. Post-operative
8. 9 month post-operative
9. Soft-tissue volume gain at 9 months post-op vs baseline
10. Cross-section at 9 months post-op vs baseline
1. Diagnosis
Multiple recession (RT1) and class I furcation

2. Application of the xHyA gel
Split-Full-Split flap design and application of surgical-grade xHyA gel. This gel mixes well with blood and stabilizes the blood clot on site.

3. Surgery
The connective tissue graft is sutured and stabilized.

4. Suturing
The wound is closed by coronally advancing the flap margin (without tension) by at least 1.5 mm to the cementoenamel junction (CEJ) with separated suspended sutures.

5. Outcome
1 year after the operation: The recession remains well covered with healthy soft tissue and an aesthetic result with minimal scars.
INFRABONY DEFECT
CASE PROVIDED BY PROF ANDREA PILLONI, ROME, ITALY

1. Initial Situation: PPD of 10 mm
2. Initial Situation: PPD of 10 mm
3. Situation after flap preparation and thorough degranulation of defect
4. Defect filled with a mixture of xHyA and a bone filler
5. Defect filled with a mixture of xHyA and a bone filler.
6. Situation 72h post-OP shows accelerated healing.
7. Situation 72h post-OP shows accelerated healing.
8. After 8 years
 Significant reduction of probing depth to 2–3 mm
SOCKET PRESERVATION
CASE PROVIDED BY DR BACHAR HUSSEINI, BEIRUT, LEBANON

1. Split case with socket preservation
2. Sticky bone of DBBM + xHyA gel (right)
3. Filling of sockets with DBBM (left) and sticky bone (right)
4. Tissu punches
5. Closure of sockets with autogenous tissue
6. Healing at 2 months
7. Volume resorption at 2 months. Limited volume resorption in xHyA+DBBM group (right)

Coronal Apical

Histology DBBM at 2 months. Low amount of new bone cells (pink). Limited resorption of DBBM (grey). Presence of soft tissue (blue).

Coronal Apical

Histology DBBM + xHyA at 2 months. Significant new bone cells. DBBM resorption. Low presence of soft tissues.
GUIDED BONE REGENERATION

CASE PROVIDED BY PROF DARKO BOŽIĆ, ZAGREB, CROATIA

1. Patient with a distal mandibular edentulous ridge requiring implant placement

2. Flap elevation revealed significant loss of ridge height and width.

3. Edentulous ridge with significant loss of height and width

4. A small amount of autogenous bone was harvested leaving small cortical perforations.

5. The autogenous bone was mixed with xenograft material saturated with xHyA.

6. Placement and adaptation of the graft mixture onto the recipient site

7. The graft mixture was covered with a resorbable collagen membrane (SMARTBRANE) and fixed with pins.

8. After 6 months Significant gain of bone width with almost no residual graft particles visible

9. Implants of 4mm width were placed in the correct prosthetic positions.

10. After 6 months Cone beam computed tomography (CBCT) showing a significant amount of newly formed bone.
PERIODONTAL TREATMENT AND SINUS ELEVATION

CASE PROVIDED BY PROF A. FRIEDMANN, WITTEN/HERDECKE, GERMANY

1. Hopeless premolar with periodontal treatment and sinus elevation

2. Sticky bone with cross-linked hyaluronic acid (xHyA) gel combined with porous porcine xenograft granules

3. Post-op situation

4. 7m post-OP: PD ≤ 3 mm / BoP negative / CAL gain at 7 months ≈ 5.5 mm. Re-entry discloses defect resolution at distal wall

5. Final prosthetic work

6. 7 months histology of porcine xenograft with xHyA (H). Ongoing regenerative process:
 - Osteoclasts (O) resorb porcine xenograft (S)
 - New bone creation
 - Minimal presence of soft tissue

11. De Boule K et al. ‘A Review of the Metabolism of 1,4-Butanediol Diglycidyl Ether – Crosslinked Hyaluronic Acid Dermal Fillers.’ Dermatologic Surgery 2013;39(12):1758-1766

23. Pilloni A, Schmidlin PR, Sahrman P, Sculean A, Rojas MA. ‘Effectiveness of adjunctive hyaluronic acid application in coronally advanced flap in Miller class I single gingival recession sites: a randomized controlled clinical trial, Clinical Oral Investigations

24. Fickl et al. 2021 (submitted)

25. Bachar Husseini et al 2021 (submitted)

Note: Smartgraft is a registered brand of Regedent AG and manufactured by Collagen Matrix Inc. HYADENT BG is a registered brand and manufactured by BioScience GmbH. Smartbrane is a registered brand and manufactured by Regedent AG.
<table>
<thead>
<tr>
<th>OPTIONS</th>
<th>Xenograft</th>
<th>Collagen membrane</th>
<th>xHyA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root coverage with CTG</td>
<td></td>
<td></td>
<td>1 x 1.2 ml</td>
</tr>
<tr>
<td>Intraosseous defect (1-3 walls)/furcations (class I-III)</td>
<td>0.25 – 1.0 mm granules</td>
<td>15 x 20 mm</td>
<td>1 x 1.2 ml</td>
</tr>
<tr>
<td>Fenestration defect</td>
<td>0.5 cc or 1 cc of fine particles</td>
<td>20 x 30 mm</td>
<td>1 x 1.2 ml</td>
</tr>
<tr>
<td>Implant dehiscence</td>
<td>0.5 cc or 1 cc of fine particles</td>
<td>15 x 20 mm</td>
<td>1 x 1.2 ml</td>
</tr>
<tr>
<td>Extraction socket</td>
<td>1.0 cc of fine particles</td>
<td>10 x 10 mm or 15 x 20 mm</td>
<td>1 x 1.2 ml</td>
</tr>
<tr>
<td>Vertical / horizontal augmentation</td>
<td>2.0 cc of large particles</td>
<td>20 x 30 mm ou 30 x 40 mm</td>
<td>1 x 1.2 ml</td>
</tr>
<tr>
<td>Ridge preservation</td>
<td>2.0 cc of large particles</td>
<td>30 x 40 mm</td>
<td>1 x 1.2 ml</td>
</tr>
<tr>
<td>Sinus floor elevation</td>
<td>2.0 cc of large particles</td>
<td>15 x 20 mm or 20 x 30 mm</td>
<td>1 x 1.2 ml</td>
</tr>
<tr>
<td>Protection Schneiderian membrane</td>
<td></td>
<td>15 x 20 mm or 20 x 30 mm</td>
<td>1 x 1.2 ml</td>
</tr>
<tr>
<td>Scar healing / esthetics</td>
<td></td>
<td></td>
<td>1 x 1.2 ml</td>
</tr>
</tbody>
</table>